Quantum Volume

نویسندگان

  • Lev S. Bishop
  • Sergey Bravyi
  • Andrew Cross
  • Jay M. Gambetta
  • John Smolin
چکیده

As we build larger quantum computing devices capable of performing more complicated algorithms, it is important to quantify their power. The origin of a quantum computer’s power is already subtle, and a quantum computer’s performance depends on many factors that can make assessing its power challenging. These factors include: 1. The number of physical qubits; 2. The number of gates that can be applied before errors make the device behave essentially classically; 3. The connectivity of the device; 4. The number of operations that can be run in parallel. Here we propose an architecture-neutral metric, the quantum volume, to summarize performance against these factors. The quantum volume measures the useful amount of quantum computing done by a device in space and time. Table 1 summarizes predicted quantum volumes for potential near-term devices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presentation of the Competency Model of Leaders in a Quantum Organization

The purpose of this study was to present a competence model for leaders of quantum organizations. This research was exploratory and mix method (qualitative and quantitative). In the qualitative part of the statistical society, the research was conducted by professors of management from different universities and the statistical population of the quantitative part of the research consisted of th...

متن کامل

Loop Quantum Cosmology II: Volume Operators

Volume operators measuring the total volume of space in a loop quantum theory of cosmological models are constructed. In the case of models with rotational symmetry an investigation of the Higgs constraint imposed on the reduced connection variables is necessary, a complete solution of which is given for isotropic models; in this case the volume spectrum can be calculated explicitly. It is obse...

متن کامل

Antibacterial effect assessment of ZnS: Ag nanoparticles

Objective(s): A large ratio of surface to volume of nanoparticles in comparison with bulk ones, will increase the cell penetration and therefore their toxicity. Materials and Methods: Chemical precipitation method was used in order to synthesis of ZnS:Ag quantum dots. Their Physical properties and characteristics were assessed by X-ray diffraction, Ultra Violet-Visible Spectrophotometer, Transm...

متن کامل

Theoretical study for evaluation of corrosion inhibition performance of two thiocarbohydrazide inhibitors

Molecular dynamics (MD) simulation and Density functional theory (DFT) methods were applied to the two thiocarbohydrazides derivatives (T1 and T2) as corrosion inhibitors for carbon steel in aqueous phase. Experimental results have shown that the corrosion rate follows the below order: T1>T2. Quantum chemical parameters such as hardness (η), electrophilicity (ω),polarizability (α), dipole momen...

متن کامل

Fluorescent Contrast agent Based on Graphene Quantum Dots Decorated Mesoporous Silica Nanoparticles for Detecting and Sorting Cancer Cells

Background and Objectives: The inability of classic fluorescence-activated cell sorting to single cancer cell sorting is one of the most significant drawbacks of this method. The sorting of cancer cells in microdroplets significantly influences our ability to analyze cancer cell proteins. Material and Methods: We adapted a developed microfluidic device as a 3D in vitro model to sorted MCF-7 c...

متن کامل

The Volume Operator in Discretized Quantum Gravity

We investigate the spectral properties of the volume operator in quantum gravity in the framework of a previously introduced lattice discretization. The presence of a well-defined scalar product in this approach permits us to make definite statements about the hermiticity of quantum operators. We find that the spectrum of the volume operator is discrete, but that the nature of its eigenstates d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017